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Abstract. Chiral-symmetry restoration is usually discussed in the context of quark matter, a system of
deconfined quarks. However, many systems like stable nuclei and neutron stars have quarks confined within
nucleons. In the present paper we use a Fermi sea of three-quark clusters instead of a Fermi sea of deconfined
quarks to investigate the in-medium quark condensate. We find that an enhancement of the chiral breaking
in clustered matter as claimed in the literature is not a consequence of the clustering but rather dependent
on the microscopic model dynamics.

PACS. 21.65.+f Nuclear matter – 24.85.+p Quarks, gluons, and QCD in nuclei and nuclear processes –
12.39.-x Phenomenological quark models

1 Introduction

One of the key issues of contemporary nuclear physics is to
understand how hadronic properties change in a hadronic
medium at finite density and temperature. In general, low-
energy hadronic properties, such as meson and baryon
masses, are determined by the chiral condensate. In ultra-
relativistic heavy-ion collisions it is possible to produce
matter at temperatures that, much likely, lead to color
deconfinement and to the chiral phase transition. The chi-
ral phase transition is also related to the behavior of the
condensate as a function of the temperature. Therefore,
both at low- and high-energy nuclear physics, fundamental
questions on the physics of strong interactions are related
to the in-medium behavior of the quark condensate.

Chiral-symmetry restoration at finite baryon density
is usually discussed in the context of quark matter, i.e. a
system of deconfined quarks. For many systems like sta-
ble nuclei and neutron stars, quarks are confined within
nucleons and are far from being free. The usual scenario
for in-medium chiral restoration is Pauli blocking. That is,
the quarks that occupy uniformly the Fermi sea contribute
positively to the quark condensate and when this positive
contribution is added to the negative contribution com-
ing from the quarks in the Dirac sea, the absolute value
of the condensate decreases. This decrease is the signal of
the chiral restoration. The original model of Nambu and
Jona-Lasinio [1] (NJL), reinterpreted in terms of quarks,
has been the prototype model for such investigations [2,3].

In a recent publication [4] it was argued that once
quarks are confined within nucleons, there is the possibil-
ity of an in-medium enhancement of the chiral breaking.
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This is because the momentum distribution of confined
quarks is very different from that of free quarks and, de-
pending on the dynamics of the constituent quarks, the
Pauli blocking becomes less effective than in a Fermi sea
of quarks. This is a very interesting result, with far reach-
ing consequences for many experiments planned for the
near future.

The author of ref. [4] substantiated his claim on the
basis of a model inspired on Coulomb gauge QCD [5]
(CgQCD). This model is basically a generalization of the
NJL model in that instead of the point-like NJL interac-
tion, it uses a confining potential. The wave functions of
the clusters of three quarks were obtained using a varia-
tional approach [6]. In the present paper we reinvestigate
this issue using the same ideas of ref. [4], but use a slightly
different philosophy with respect to the dynamics. We em-
ploy the NJL model to generate the massive constituent
quarks, and then confine them with a nonrelativistic po-
tential in a way to obtain a nucleon cluster of three con-
stituent quarks. Then we construct a Fermi sea of nucleon
clusters and obtain the gap equation. In this way, one is
able to investigate the differences in the Pauli blocking
within the same basic underlying NJL model.

2 The model

We start considering chiral-symmetry restoration in quark
matter in the context of the NJL model. For our purposes
in the present paper it is sufficient to use the following
two-flavor Lagrangian density [2,3]:

L = iψ̄γµ∂µψ + GS

[
(ψ̄ψ)2 − (ψ̄τγ5ψ)2

]
, (1)
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where ψ is the quark field operator (with color and fla-
vor indices suppressed). For simplicity we have taken zero
current quark masses. The energy density of quark matter,

EQM =
1
V

∫
d3x 〈QM |T 00(x)|QM〉, (2)

where |QM〉 is the many-quark state and T 00 is the zero-
zero component of the energy-momentum stress-tensor

Tµν(x) = iψ̄γµ∂νψ(x)− gµνL. (3)

In the mean-field approximation, the state |QM〉 can be
written in a schematic way as

|QM〉 = q†(kF) · · · q†(k2)q†(k1)|Ω〉, (4)

where q†(k) are constituent quark creation operators and
|Ω〉 is the vacuum of constituent quarks —we have sup-
pressed color-flavor-spin indices. In this approximation,
and not using the equations of motion of the quark field
operator, E can be written as

EQM=−(2NfNc)
∫

d3k

(2π)3
k2

E∗(k)
[1− n(k)]

−GS (2NfNc)2
{∫

d3k

(2π)3
M∗

E∗(k)
[1−n(k)]

}2

, (5)

where Nf and Nc are respectively the number of quark
flavors and colors, E∗(k) = (k2 + M∗ 2)1/2, M∗ is the in-
medium constituent quark mass, and n(k) is the quark
density. For the state given in eq. (4), the quark density
is simply

n(k) = θ(kF − k), (6)
with kF being the quark Fermi momentum. The normal-
ization of quark density is such that∫ ∞

0

d3k n(k) =
4π
3

k3
F ≡ ρq

γq
, (7)

where ρq and γq are respectively the quark density and
degeneracy. The integrals in eq. (2) are ultraviolate diver-
gent and a cutoff Λ has to be introduced. Since the model
is nonrenormalizable, Λ is an additional parameter of the
model.

The in-medium constituent quark mass M∗ can be ob-
tained by minimizing EQM with respect to M∗. The min-
imization leads to the usual gap equation [2,3]

M∗ = 2GS (2NfNc)
∫ Λ d3k

(2π)3
M∗

E∗(k)
[1− n(k)]. (8)

Given the solution of this equation, one can calculate the
in-medium quark condensate. The condensate of quark
flavor q(= u, d) is given by

〈q̄q〉 = −2Nc

∫ Λ d3k

(2π)3
M∗

E∗(k)
[1− n(k)]

= 2Nc

∫ Λ d3k

(2π)3
M∗

E∗−(k)
+ 2Nc

∫ kF

0

d3k

(2π)3
M∗

E∗
+(k)

, (9)

where E∗
±(k) = ±(k2 + M∗ 2)1/2.

The last two lines in eq. (9) are written in a way
to make clear the physical interpretation of the effect of
the Fermi sea of constituent quarks: the positive-energy
quarks of the Fermi sea add a positive contribution to
the condensate and therefore cancel the contributions of
the negative-energy quarks of the Dirac sea. The positive
contribution of the Fermi sea is a monotonically increas-
ing function of quark Fermi momentum kF, and leads to
a partial restoration of chiral symmetry in a medium with
a finite quark density. This is the basis of the common
wisdom of the in-medium decrease of (the absolute value
of) the condensate.

Next, we populate the positive-energy states with clus-
ters of three constituent quarks confined by a potential.
The Fermi sea is now is written as

|NM〉 = N†(pF) · · ·N†(p2)N†(p1)|Ω〉, (10)

where the N†(p) are nucleon creation operators. These are
written in terms of the constituent quark creation opera-
tors as

N†(p) =
∫

d3k1d3k2d3k3 Ψp(k1,k2,k3)

× q†(k1)q†(k2)q†(k3), (11)

where Ψp is the Fock-space amplitude for a nucleon with
c.m. momentum p. In the equations above we have sup-
pressed nucleon spin-isospin indices and, as usual, quark
color-spin-flavor indices.

In order to confine the constituent quarks, we add a
nonrelativistic two-body harmonic-oscillator potential and
write for Ψp

Ψp(k1k2k3) = δ(p − k1 − k2 − k3)Φp(k1k2k3), (12)

and for Φ we make a Gaussian ansatz [6],

Φp(k1k2k3) =
(
3b4

π2

) 3
4

exp

[
−b2

2

3∑
i=1

(
ki − p

3

)2
]

, (13)

where b is the variational parameter. This leads to the
following normalization for the amplitude Ψ :

〈Ψp′ |Ψp〉 = δ(p′ − p). (14)

In the mean-field approximation, and neglecting effects
of quark-exchange between different nucleons [7], the en-
ergy density of nuclear matter,

ENM =
1
V

∫
d3x 〈NM |T 00(x)|NM〉, (15)

is given by precisely the same form as in eq. (5), but with
a different quark momentum distribution n(k). For the
ansatz in eqs. (12) and (13), the quark momentum distri-
bution in the state of clustered matter, eq. (10), is given by

n(k) =
∫ pF

0

d3p np(k), (16)
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with

np(k) =
(
3b2

2π

) 3
2

exp
[
−3
2
b2

(
k − 1

3
p

)]
. (17)

The quark distribution function is normalized as

∫ ∞

0

d3k n(k) =
4π
3

p3
F ≡ ρN

γN
. (18)

For symmetrical nuclear matter,

ρN

γN
=

ρq

γq
, (19)

and therefore quarks and nucleons have the same Fermi
momentum, kF = pF.

The gap equation has the same form as in eq. (8), but
now it is coupled with the equation for b, the variational
parameter of the nucleon amplitude. Numerical results are
presented in the next section.

3 Numerical results

Initially we fix the parameters to vacuum properties. Us-
ing Λ = 0.7 GeV and GSΛ2 = 2.14, we obtain for the
constituent quark mass the value M = 335 MeV and for
the condensate 〈q̄q〉 = (−268 MeV)3. We adjust the spring
constant of the confining potential to obtain for the size
parameter of the nucleon the value b = 0.5 fm. Then the
nucleon mass can be fitted by adding a negative constant
to the potential, as usually done in quark potential models.

Next, we solve the gap equation and minimize the nu-
cleon mass with respect to the size parameter. The solu-
tions will be M∗ and b∗. We are interested in the behavior
of the quark condensate as a function of the nucleon den-
sity. In fig. 1 we present the ratio of the in-medium to
vacuum condensates, as a function of the ratio of the nu-
cleon density to the saturation density of normal nuclear
matter. The figure shows that the (absolute value of the)
condensate in medium decreases monotonically with the
density. In addition, clearly there is no sign of reversing
this tendency.

The result shown in fig. 1 is easy to understand. The
gap equation always gives a density dependence of the
mass for the constituent quarks that is monotonically de-
creasing as the density increases. Therefore, the kinetic
energy of the quarks in the nucleon bound state tends to
increase, leading to the swelling of the nucleons. In or-
der to obtain an increase of |〈q̄q〉| in medium, the nucleon
should shrink, as argued in ref. [4]. In the CgQCD model
of ref. [4], there is a spin-spin force that induces a very
strong attraction as the symmetry becomes restored. This
attraction then leads to a shrinking of the nucleon. In the
present model this is impossible, and the usual scenario of
chiral symmetry restoration is maintained.
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Fig. 1. The ratio of the in-medium to vacuum condensates as
a function of the ratio of the nucleon density to the saturation
density of normal nuclear matter.

4 Conclusions and perspectives

In the present paper we have shown that the question of
an enhancement of the chiral breaking in hadronic mat-
ter as argued in ref. [4] seems to be model dependent.
This is because the basic mechanism that could drive an
enhancement depends crucially on a very attractive inter-
action that becomes stronger as the symmetry is restored.
In ref. [4] the attraction comes from a spin-spin force that
is a consequence of the very peculiar form of the confining
potential used there. It would be interesting to investigate
this question further with another spin-dependent interac-
tion, such as transverse-gluon interactions that have been
shown [5] to play an important role in the mechanism of
dynamical chiral symmetry breaking.

Certainly the issue is very interesting and, in order
to make progress, it is necessary to have a better under-
standing on the dynamics of the interaction that drives
the symmetry breaking.
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